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Instrumental Variables and External Validity

• Local Average Treatment Effects (LATE) capture the causal effect of
an instrument-induced shift in treatment

• Each LATE is necessarily tied to the instrument that generates it

• Is this surprising or troubling? Could it be otherwise?

• Draft lottery instruments tell us the effect of being drafted, not
necessarily volunteering

• Compulsory schooling instruments reflect the effect of high school
graduation, not an MBA

• The LATE framework highlights questions of external validity

• Can one instrument identify the average effect induced by another
source of variation?

• Can we go from average effects on compliers to average effects on the
entire treated population or an unconditional effect?

• The answer to these questions is usually “no,” at least, not without
additional assumptions ...



Routes to External Validity

1 Constant effects and distributional assumptions buy you the world

2 Semi/Non-parametric alternatives

• Try to exploit latent-index selection w/o normality (e.g., Heckman,
Tobias, and Vytlacil, 2003; Angrist, 2004)

• Non-parametric ID using ”super-instruments” (Chamberlain 1986,
Heckman 1990; Angrist-Imbens 1991)

• Bayesian functional-form-based extrapolation (Chamberlain, 2010)

3 Multiple instruments give empirical leverage

• Ichino and Winter-Ebmer (1999) and Oreopoulos (2006) compare IV
estimates of the returns to schooling; PO concludes that LATE is close
to the effect on non-treated

• Angrist, Imbens, Graddy (2000) use multiple IVs to assess homogeneity
and linearity of demand

• Ebenstein (2009) compares LATE estimates of fertility effects for
Taiwan and the US, argues the former are close to ATE

• Angrist, Lavy and Schlosser (2010) compare alternative IV estimates of
the quantity-quality trade-off; all effects are zero



The Covariate Approach to External Validity

• LATE is the average causal effect on compliers: we can’t name them
but we can still get to know them

• The distribution of complier characteristics is identified and easily
estimated (Abadie 2003; An grist and Pischke, 2009)

• We assume here that differences in complier characteristics are what
makes a given LATE estimate special; this is Conditional Effect
Ignorability (CEI)

• Given CEI, we might explain the difference in LATE across instruments
• Given CEI, we might explain the difference between LATE and ATE or

effects on the treated and nontreated

• CEI can be used for estimation

• Covariate-specific LATEs can be weighted to produce other effects,
such as the effect on the treated, or hypothetical LATE with a different
complier population



Overidentification in the Covariate Approach

• Overid tests compare alternative IV estimates and are said to reject
exclusion restrictions when the estimates differ

• Traditional overid testing is a check on internal validity
• In the LATE framework, by contrast, two internally valid instruments

need not estimate the same thing

• We use covariate-specific overidentification tests to see if complier
characteristics explain differences in unconditional effects

• In other words, we use overid stats to test external validity

• In practice, alternative IV estimates of covariate-specific effects might
match for some covariate values only

• We use overid stats to isolate covariate-defined subsamples for which
alternative IV estimates seem to match

• Application: kids and labor supply (Angrist and Evans, 1998)

• Two good instruments, twins and samesex; very different IV estimates



Framework

• Potential outcomes, y0 and y1, describe what happens under
alternative assignments of treatment, d

• The observed outcome, y, is

y = y0 + (y1 − y0)d

• Potential treatment status is dz
1 when the instrument, z, is switched

on and dz
0 when z is switched off

• Observed treatment status is

d = dz
0 + (dz

1 − dz
0)z

• Note the instrument-specific notation for potential treatment status

• Covariates are denoted by the vector x



LATE Theorem: Imbens and Angrist (1994)

Assume:
(a) Independence and Exclusion: (y1,y0,dz

1,dz
0)q z

(b) First-stage: E[dz
1 − dz

0] 6= 0 and 0 < P[z = 1] < 1
(c) Monotonicity: dz

1 ≥ dz
0 a.s., or vice versa

Then,

E[y | z = 1]−E[y | z = 0]

E[d | z = 1]−E[d | z = 0]
= E[y1 − y0 | dz

1 > dz
0] := ∆z

• IV using z as an instrument for the effect of d on y with no
covariates is the (1940) Wald estimator

• Three instrument-defined subgroups:
(a) z-compliers; dz

1 = 1 and dz
0 = 0

(b) z-always-takers; dz
1 = dz

0 = 1
(c) z-never-takers; dz

1 = dz
0 = 0

• LATE is the effect of treatment on z-compliers



Childbearing Effects on Labor Supply

• The potential for omitted variable bias in the relationship between
fertility and labor supply seems clear

• Mothers with weak labor force attachment or low earnings potential
may be more likely to have children

• Angrist and Evans (1998) use two IVs to solve this problem

1 Twins: a dummy for a multiple second birth in a sample of mothers
with at least two children

2 Samesex : a dummy for same-sex sibling pairs (American parents want
a diversified sibling-sex portfolio)

• Wald estimates are reported in Table 1

• Twins and samesex IV estimates both suggest that the birth of a
third child has a substantial effect on weeks worked and employment

• But Twins IV estimates are about half as large as those using samesex
. . . Can this be explained by differences in complier characteristics?



Complier Characteristics

• How do twins and samesex compliers differ?

• Suppose x is an indicator for college graduates. Then,

P[x = 1 | dz
1 > dz

0]

P[x = 1]
=

E[d | z = 1,x = 1]−E[d | z = 0,x = 1]

E[d | z = 1]−E[d | z = 0]

• Relative likelihood a complier is college grad is given by the ratio of
the first stage for college graduates to the overall first stage

• For general x, the mean of covariates for compliers can be obtained
using Abadie’s (2003) kappa-weighting scheme:

E[x | d1 > d0] =
E[κ(z)x]

E[κ(z)]
,

where

κ(z) = 1− d(1− z)

1−P[z = 1]
− (1− d)z

P[z = 1]

• (We can also look at the distribution of potential outcomes)



Complier Characteristics (cont.)

• Panel A of Table 2 reports compliers’ characteristics ratios for
schooling and age dummies; Kappa weighting is illustrated in Panel B

• Both panels show that twins compliers are:

• More likely than samesex compliers to have a young second-born
(women w/very young second borns can only have a 3rd via multiples)

• More educated than samesex compliers

• Samesex compliers have/are:

• Older than average second-borns
• Less educated than average (less likely to be college graduates)

• Age of second born and education are important mediators of the
causal effects of childbearing

• Women with a young second-born at home should be less affected by
the birth of a third child

• Educated women adjust labor supply less when family size increases
(they pay for child care)



Conditional Effect Ignorability

Covariates play two roles in our setup:

1 Supporting identification (conditional ignorability of IV)

2 A possible basis for extrapolation

Assumption (Conditional LATE assumptions)

(a) Independence and Exclusion: (y1,y0,dz
1,dz

0)q z | x a.s.
(b) First stage: E[dz

1 − dz
0 | x] 6= 0 and 0 < P[z = 1 | x] < 1 a.s.

(c) Monotonicity: P[dz
1 ≥ dz

0 | x] = 1 or P[dz
1 ≤ dz

0 | x] = 1 a.s.

Assumption (Conditional Effect Ignorability for an instrument z)

E[y1 − y0 | dz
1,dz

0,x] = E[y1 − y0|x] a.s.

• A sufficient condition for CEI is

y1 = y0 + g(x) + ν,

where ν is mean-independent of (dz
1,dz

0) conditional on x



CEI in a latent-index model

• d = 1[h(x, z) > η]; errors indep. of instruments and covs

• Potential treatments:

dz
0 = 1[h(x, 0) > η], dz

1 = 1[h(x, 1) > η]

• Potential outcomes:

y0 = g0(x) + ε0

y1 = g1(x) + ε1

• Assuming h(x, 1) ≥ h(x, 0) a.s., conditional LATE can be written

∆z (x) = E[y1 − y0 | h(x, 1) > η > h(x, 0),x]

= g1(x)− g0(x) + E[ε1 − ε0 | h(x, 1) > η > h(x, 0),x]

• The CEI says η and ε1 − ε0 are independent given x, so

∆z (x) = E[y1 − y0 | x] = g1(x)− g0(x)

• No Roy Selection!



CEI: A Structural Story

• Combine Olsen (1980) and Vytlacil (2002):

E[ε1 − ε0 | η,x] = ρ(x)η and η | x, z ∼ U(0, 1)

• Write conditional LATE as

∆z (x) = g1(x)− g0(x) + ρ(x)E[η | h(x, 1) > η > h(x, 0),x]

= g1(x)− g0(x) + ρ(x)[h(x, 1) + h(x, 0)]/2

For each x, CEI turns on ρ(x)
• Treatment decision based on predicted benefits minus costs of

childbearing (Imbens and Newey, 2009)

1[h(x, z) > η] = 1{λ(x)E[y1 − y0 | x, η] > c(x, z)}

where λ(x) is the weight given to outcome gaps, c(x, z) is the
expected cost of having a third child, and η is private information

• ρ(x) is smaller when:

1 λ(x) is small (labor supply consequences are of little import);
2 η matters little given x (e.g., for women with a young second-born)



LATE-Reweight Theorem

Covariate-specific LATE using z,

∆z (x) := E[y1 − y0 | dz
1 > dz

0,x = x ] (1)

Theorem (Reweighting LATE)

Let z be an instrument that satisfies CEI and cond. LATE identification
and let sz = s(dz

0,dz
1, z) be an indicator for any subpopulation defined by

z. For example, for z-compliers sz = dz
1 − dz

0, for the treated
sz = (1− z)dz

0 + zdz
1 = d, and for the population sz = 1.

Assuming E[|y|] < ∞,

E[y1 − y0 | sz = 1] = E[∆z (x) | sz = 1] =
∫

∆z (x)ωz
s (x)dFx(x),

where
ωz

s (x) = P[sz = 1 | x = x ]/P[sz = 1]

and
∫

ωz
s (x)dFx(x) = 1.



Reweighting LATE

• This result allows us to construct ∆z , TOT , TNT , ATE using weights

ωz
∆(x) =

E[d | z = 1,x = x ]−E[d | z = 0,x = x ]

E[d | z = 1]−E[d | z = 0]

for z-compliers;

ωz
TOT (x) = E[d | x = x ]/E[d]

for the treated;

ωz
TNT (x) = E[1− d | x = x ]/E[1− d]

for the non-treated; and

ωz
ATE (x) = 1

for the population



From One LATE to Another

• Let ∆w (x) be defined as in (??) using the instrument w. Then,

∆z − ∆w =
∫
[∆z (x)− ∆w (x)]ωz

∆(x)dFx(x)

+
∫

∆w (x)[ωz
∆(x)−ωw

∆ (x)]dFx(x)

• If z and w satisfy CEI,

∆w (x) = ∆z (x)a.s.

We can then reweight to go from one LATE to another:

Theorem (OLTA)

Let sw = s(dw
0 ,dw

1 ,w) be an indicator for any subpopulation defined by
instrument w. If E[|y|] < ∞,

E[y1 − y0 | sw = 1] =
∫

∆w (x)ωw
s (x)dFx(x) =

∫
∆z (x)ωw

s (x)dFx(x)



Compatible Average Treatment Effects (CATE)

• In practice, CEI may be satisfied only for some covariates

• Empirically, this means a good match across instruments for some
covariate values; for others, not so good

• Estimates for a population defined by compatible covariate-specific
effects may have high predictive value . . . for the compatible

• CATE is

∆z,w
c =

∫
∆z (x)dFx(x | ∆z (x) = ∆w (x))

• If CEI holds for z and w for all values of x, CATE is ATE; Otherwise,
CATE is ATE for the compatible subpopulation

• Rationales for CATE

• We’d like to report estimates for the largest and most representative
subpopulation possible; that might be TOT|CATE

• We’d like to make predictions for each covariate value, in practice we’ll
borrow info from compatible instruments and average to get something
more precise



Estimation and Inference for Reweighting Estimators

Assumption (Sampling)

{ri = (yi ,di ,xi , zi ,wi ); i = 1, . . . , n} are i .i .d . observations from
the vector r = (y,d,x, z,w)

Assumption (Discrete covariates)

For a finite set X , P[x ∈ X ] = 1

• Random sampling is standard for cross sectional data

• Education and age covariates in the empirical example are discrete

• Generalization to continuous covariates is straightforward under CEI,
but more complicated for CATE, so we leave this for another day



The Plug-in Principle

• Our reweighting estimands other than CATE have the form,

θs = E[∆z (x)ωj
s(x)], ωj

s(x) = P[sj = 1 | x = x ]/P[sj = 1],

for j ∈ {z , w}
• Replace expectations E and probabilities P by empirical analogs, En

and Pn:

θ̂s = En[∆̂z (xi )ω̂
j
s(xi )], ω̂j

s(x) = Pn[s
j
i = 1 | x = x ]/Pn[s

j
i = 1]

• ∆̂z (x) can be Wald with instrument z in cell x , or 2SLS (or GMM)
using both z and w as instruments

• For LATE, sji is not observable, so we use

ω̂j
∆(x) =

En[di | j = 1,x = x ]−En[di | j = 0,x = x ]

En[di | j = 1]−En[di | j = 0]
, j ∈ {z,w}

• Consistency of θ̂s follows from LLN and the Slutsky theorem



Inference under CEI

• Estimators are smooth functions of IV/GMM estimators and therefore
asymptotically normal under standard regularity conditions

• Two routes to inference: delta method to derive the asymptotic
variance, or resampling methods

• The bootstrap saves us from having to evaluate complicated
analytical formulas

• Consistency of bootstrap for reweighting estimators follows from Hall
and Horowitz (1996), Hahn (1996), Brown and Newey (2002)
theorems for GMM, and delta method for bootstrap (see, e.g.,
Theorem 23.5 in van der Vaart, 1998)

• How to bootstrap in practice? We go with the empirical likelihood
(EL) bootstrap as described in Brown and Newey (1992)

• EL bootstrap works well for moment restriction models because it uses
an efficient estimator of the DGP



EL Bootstrap for Reweighting Estimators

• EL bootstrap resamples from the empirical likelihood distribution
(ELD) that imposes CEI (compatibility) in all cells, instead of the
empirical distribution

• Let the compatibility conditions be E[g(r, θ)] = 0. The ELD
(π̂1, ..., π̂n) is the solution to

max
π1,...,πn

n

∑
i=1

ln(πi ), s.t.
n

∑
i=1

πig(ri , θ̂) = 0,
n

∑
i=1

πi = 1, πi ≥ 0,

where θ̂ is the EL or another consistent estimator of θ

• The EL bootstrap resamples from the data with probabilities π̂i

instead of 1/n

Theorem (Bootstrap consistency)

Let z and w be two instruments that satisfy cond. LATE and CEI
Assumptions. If E [y2] < ∞, the empirical likelihood bootstrap is
consistent for the asymptotic distribution of θ̂s



But Weight . . . estimation and inference for CATE

• We want to condition on {x : ∆z (x) = ∆w (x)}, but in finite samples
we never have ∆̂z (x) = ∆̂w (x)

• We can use covariate-specific overidentification tests to find
compatible values of x

• The cov-specific overid test, J(x), measures ‖∆̂z (x)− ∆̂w (x)‖
• Under the null, J(x) is χ2(1) = N(0, 1)2

• So we weight cell estimates as follows

∆̂z,w
c = En[∆̂z,w (xi )ω̂c (xi )]; ω̂c (x) ∝ exp

[
− J(x)

an(x)

]
,

where ∆̂z,w (x) is a covariate-specific GMM estimator using z and w,

and an(x)→ ∞ and an(x) = o(n); the application sets an(x) =
lnnx
k

(nx = cell size; k = number of cells)

• ∆̂z,w
c is consistent for CATE because: (a) plim J(x)

ln nx
= ∞ where CEI

fails; (b) plim J(x)
ln nx

= 0 otherwise
• We can view the weights as a moment selection device in the spirit of

Andrews (1999)



CATE Inference Issues

• Data-driven selection of an estimator is problematic (like pre-testing);
see, e.g., Leeb and Potscher (2009)

• Convergence of finite-sample distribution to the limiting distribution is
non-uniform in the DGP and potentially slow

• This is most relevant when compatibility is not empirically clear-cut
(like having a marginally weak instrument, or near-unit root)

• EL versus an unrestricted nonparametric bootstrap

• Virtue of EL is potentially a vice for CATE: EL imposes compatibility
but CATE allows CEI to fail for some cells

• We therefore check EL against a nonparametric bootstrap that does
not impose CEI

• Subsampling may improve on the bootstrap in pretesting scenarios
(see, e.g., Andrews and Guggenberger, 2009)

• Our application may not be well-suited to subsampling because some
cells are small



Estimates

• Our empirical work focuses on a 12-cell representation of second child
age and mother’s education

• Three 2nd-born age groups: ≤ 4, (4, 8], and > 8 (all mothers 2+)
• Four schooling groups: HS dropout, HS graduate, some college, and

college graduate

• These covariates are strongly related to compliance probabilities

• Multiple births have larger first-stage effects on women with a young
second-born and for women with some college and college degrees

• Sex-composition compliers are relatively unlikely to be college
graduates and have older second-borns

• Labor supply effects are also likely to vary with these covariates

• The birth of a third child has little effect on the work behavior of a
woman with a young second-born if she is at home anyway

• Relatively educated women with high wages should be affected less by
the birth of a child than less-educated women



Estimates (cont.)

• Table 3 reports the conditional estimates ∆̂z (x) and ∆̂z,w (x), and
the weighting functions ω̂z

s (x) and ω̂z
CATE (x) for each cell

• Women with a third child differ from those without
• As we saw in table 2, Twins and samesex compliers have different

characteristics and differ from the random sample
• The overid rejects CEI in only two cells for weeks worked (only one for

employment), though covariate-specific IV estimates are fairly noisy

• Table 4 compares IV, GMM, and LATE-reweighted estimates

• Reweighting covariate-specific twins estimates using samesex weights -
and vice versa - brings the estimates together

• ATE, TOT, and to a lesser extent TNT are poorly matched (twins
LATE is TNT)

• Downweighting a few bad cells, CATE matches well (compare −3.80
and −3.66 for weeks and −.099 and −.095 for employment)



The Compatible Subpopulation

• For given over-identified model, the CATE weighting function (and
subpopulation) potentially depend on the dependent variable

• Figure 1 describes the compatible subpopulation for two versions of
CATE, the first using weeks worked, the second using employment

• The first version shows ω̂c(x); the second plots ω̂c(x)dFx(x)

• Relative to the covariate histogram, CATE subpopulations emphasize:

• Women with young second-borns
• More educated mothers among those with older second-borns

• CATE weights are something like those for LATE(twins) and hence
the population of non-treated

• (not quite the same since TNT did not match all that well, but both
emphasize women with younger second-borns and more educated)

• We knew that twins identify TNT, but this result shows samesex
results - appropriately reweighted - are almost equally general



Summary and Directions for Further Work

• We develop a covariate-based approach to external validity for IV
estimates

• By assuming differences in complier characteristics are what make IV
estimates special, we can construct estimates for new subpopulations
from covariate-specific LATEs

• When CEI fails for some cells, as seems likely in practice, we use the
traditional over-identification test statistic to find a population for
which a given pair of IV estimates are compatible

• CATE achieves external validity by favoring cells with
complier-independent effects (external validity is for these cells only:
no free lunch)

• Implicit pretesting makes inference for compatible effects
econometrically challenging

• The development of robust and convenient inference procedures for
CATE is a natural direction for further work



Tables and Figures



←↩

Both

Dependent 
Variable

Mean OLS First Stage
Wald 

Estimates
First Stage

Wald 
Estimates

2SLS 
Estimates

(1) (2) (3) (4) (5) (6)

Weeks Worked 20.83 -8.98 0.603 -3.28 0.060 -6.36 -3.97

(0.072) (0.008) (0.634) (0.002) (1.18) (0.558)

Overid: χ2(1) (p-value) - - - - - 5.3(.02)

Employment 0.565 -0.176 -0.076 -0.132 -0.088

(0.002) (0.014) (0.026) (0.012)

Overid: χ2(1) (p-value) - - - - - 3.5(.06)

Table 1: Wald estimates of the effects of family size on labor supply

Twins Samesex

Note: The table reports OLS, Wald, and 2SLS estimates of the effects of a third birth on labor supply using twins and sex 
composition instruments. Data are from the Angrist and Evans (1998) extract including women aged 21-35 with at least two 
children in the 1980 census. OLS models include controls for mother’s age, age at first birth, ages of the first two children, and 
dummies for race. The first stage is the same for all dependent variables.



←↩

Mean

Variable (1) (2) (3) (4) (5)

0.343 0.449 1.31 0.194 0.565

0.488 0.498 1.02 0.515 1.06

Some College 0.202 0.212 1.05 0.212 1.05

College graduate 0.132 0.151 1.14 0.092 0.702

Age of second child 26.37 22.04 .835 28.55 1.083

Mother's schooling 12.13 12.43 1.025 12.09 0.997

Table 2: Complier characteristics ratios for twins and sex composition instruments

Twins Samesex

Age of second child less 
than or equal to 16 

quarters

Notes: The table reports an analysis of complier characteristics for twins and sex composition instruments. The ratios in 
columns 3 and 5 give the relative likelihood that compliers have the characteristic indicated at left. The values in columns 2 
and 4 in Panel B. represent Abadie's (2003) kappa-weighted means. Data are from the 1980 census 5 percent sample 
including mothers aged 21-35 with at least two children, as in Angrist and Evans (1998). The sample size is 394,840 for all 
columns.

A.  Bernoulli

B. Discrete, ordered

High school graduate

]|[ 011 iii DDxE >]|[ 011 iii DDxE >][ 1ixE /]|[ 011 iii DDxE >
][ 1ixE

/]|[ 011 iii DDxE >
][ 1ixE



←↩

Age Education P(X)
P(X|D=1)/

P(X)
P(X|D=0)/

P(X)
Δz(X) ωΔ

z(X) Δw(X) ωΔ
w(X) Δz,w(X) J-pvalue ωc(X)

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

[0, 4] HS drop 0.06 0.65 1.24 -4.63 1.23 -1.26 0.77 -4.35 0.55 1.45
(1.84) (5.49) (1.60)

HS grad 0.15 0.46 1.36 -4.24 1.36 -2.66 0.59 -4.17 0.76 1.99
(1.15) (5.00) (1.04)

Some Col 0.06 0.46 1.36 -3.79 1.36 -4.93 0.66 -3.86 0.87 2.14
(1.69) (6.86) (1.59)

Col grad 0.05 0.41 1.40 -5.36 1.40 -2.21 0.54 -5.24 0.75 1.95
(1.99) (9.77) (1.84)

(4, 8] HS drop 0.07 1.29 0.81 -4.43 0.81 -9.35 1.20 -6.29 0.25 0.47
(2.65) (3.36) (2.06)

HS grad 0.17 0.93 1.05 -3.07 1.05 -5.59 1.38 -3.94 0.33 0.79
(1.52) (2.09) (1.23)

Some Col 0.07 0.91 1.06 -1.02 1.06 -7.39 1.13 -2.59 0.16 0.21
(2.22) (3.91) (1.93)

Col grad 0.04 0.89 1.08 -1.52 1.08 -2.88 0.94 -1.72 0.83 2.09
(2.63) (5.97) (2.32)

(8+] HS drop 0.10 1.79 0.47 0.29 0.47 -12.04 0.80 -5.53 0.06 0.04
(4.47) (4.74) (3.24)

 HS grad 0.17 1.40 0.73 -2.41 0.73 -9.76 1.30 -6.15 0.02 0.01
 (2.22) (2.25) (1.60)
 Some Col 0.06 1.33 0.78 -4.40 0.78 -4.72 1.10 -4.52 0.96 2.20

(3.55) (4.54) (2.82)
 Col grad 0.02 1.15 0.90 6.78 0.90 17.90 1.12 9.48 0.28 0.44

(4.99) (9.01) (4.17)

Table 3: LATE decompositions (n = 394,840)

Notes: Standard errors for estimates in parentheses. J-weights are the exponential of minus the overidentification test statistic, 
normalized to have mean one. The p-value for the joint J-statistic for all the covariate values is 0.25 for weeks and 0.29 for LFP.

Twins Samesex Twins & SamesexCovariates pmfs
IV estimates and weighting functions

A. Weeks worked

Covariates



←↩

Age Education P(X)
P(X|D=1)/

P(X)
P(X|D=0)/

P(X)
Δz(X) ωΔ

z(X) Δw(X) ωΔ
w(X) Δz,w(X) J-pvalue ωc(X)

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

[0, 4] HS drop 0.06 0.65 1.24 -0.154 1.23 -0.035 0.77 -0.143 0.43 1.15
(0.048) (0.143) (0.043)

HS grad 0.15 0.46 1.36 -0.081 1.36 -0.123 0.59 -0.083 0.73 2.14
(0.027) (0.117) (0.026)

Some Col 0.06 0.46 1.36 -0.089 1.36 -0.035 0.66 -0.086 0.74 2.15
(0.038) (0.157) (0.037)

Col grad 0.05 0.41 1.40 -0.130 1.40 -0.023 0.54 -0.125 0.65 1.90
(0.047) (0.231) (0.046)

(4, 8] HS drop 0.07 1.29 0.81 -0.140 0.81 -0.150 1.20 -0.144 0.92 2.42
(0.064) (0.082) (0.051)

HS grad 0.17 0.93 1.05 -0.081 1.05 -0.156 1.38 -0.108 0.19 0.39
(0.034) (0.046) (0.028)

Some Col 0.07 0.91 1.06 -0.034 1.06 -0.161 1.13 -0.066 0.19 0.34
(0.048) (0.084) (0.042)

Col grad 0.04 0.89 1.08 0.075 1.08 -0.202 0.94 0.028 0.06 0.03
(0.061) (0.134) (0.054)

(8+] HS drop 0.10 1.79 0.47 0.047 0.47 -0.188 0.80 -0.064 0.11 0.13
(0.101) (0.106) (0.073)

 HS grad 0.17 1.40 0.73 -0.066 0.73 -0.167 1.30 -0.117 0.13 0.20
 (0.046) (0.047) (0.033)
 Some Col 0.06 1.33 0.78 -0.110 0.78 -0.023 1.10 -0.075 0.47 1.32

(0.071) (0.092) (0.058)
 Col grad 0.02 1.15 0.90 0.034 0.90 0.224 1.12 0.082 0.33 0.68

(0.098) (0.171) (0.081)

B. Employment

Table 3: LATE decompositions (n = 394,840)

Notes: Standard errors for estimates in parentheses. J-weights are the exponential of minus the overidentification test statistic, 
normalized to have mean one. The p-value for the joint J-statistic for all the covariate values is 0.25 for weeks and 0.29 for LFP.

Twins Samesex Twins & SamesexCovariates pmfs
IV estimates and weighting functions

Covariates



←↩

Effect Conditional LATE Weighting function Estimate |t| for diff Estimate |t| for diff
Δ(X) ω(X) [1] [2] [3] [4]

LATE twins twins twins -3.15 -0.075
 (0.62) 1.32 (0.014) 0.93

samesex -2.71 -0.068  
 (0.81) (0.018)

LATE samesex samesex samesex -6.30 -0.131
 (1.15) 1.44 (0.026) 0.77

twins -5.08 -0.115  
 (1.58) (0.037)

ATE twins 1 -2.84 -0.067
 (0.76) 1.99 (0.017) 1.58

samesex -5.88 -0.123
 (1.35) (0.031)

twins, samesex -4.36 -0.092  
 (0.60) (0.014)

Weeks worked Employment
Table 4: Reweighting LATE (n = 394,840)

Notes: Standard errors for estimates in parentheses. T-statistics are for the difference between samesex and 
twins estimates. Standard errors and t-statistics obtained by Brown and Newey (2002) GMM bootstrap with 
1,000 repetions. In brackets, we report standard errors and t-statistics obtained by nonparametric 
bootstrap with 1,000 repetitions.



←↩

Effect Conditional LATE Weighting function Estimate |t| for diff Estimate |t| for diff
Δ(X) ω(X) [1] [2] [3] [4]

TOT twins P(X|D=1)/P(X) -2.38 -0.056
 (1.07) 2.85 (0.024) 2.14

samesex -7.08 -0.136
 (1.28) (0.029)

twins, samesex -4.64 -0.092  
 (0.79) (0.018)

TNT twins P(X|D=0)/P(X) -3.15 -0.075
 (0.62) 1.15 (0.014) 1.02

samesex -5.08 -0.115
 (1.58) (0.037)

twins, samesex -4.18 -0.092  
 (0.53) (0.012)

CATE twins exp[-12*J(X)/n(X)] -3.80 -0.099
 (0.80) 0.18 (0.018) 0.17

[0.64] [0.09] [0.015] [0.08]
samesex -3.66 -0.095

 (1.01) (0.023)
[0.96] [0.021]

twins, samesex -4.00 -0.101  
 (0.77) (0.017)

[0.62] [0.014]

Weeks worked Employment
Table 4: Reweighting LATE (n = 394,840)

Notes: Standard errors for estimates in parentheses. T-statistics are for the difference between samesex and 
twins estimates. Standard errors and t-statistics obtained by Brown and Newey (2002) GMM bootstrap with 
1,000 repetions. In brackets, we report standard errors and t-statistics obtained by nonparametric 
bootstrap with 1,000 repetitions.



Weighting functions: ω̂s(x)

←↩
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Weighting functions × Histogram of x: ω̂s(x)×Pn(x)

←↩

ATE Twins (TNT) Samesex TOT CATE Y1 CATE Y2
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←↩

Age Education NT C C AT NT C C AT

All All 23.28 23.20 17.15 17.35 - 23.24 19.96 17.22
[0, 4] HS drop 14.36 13.91 7.60 7.93 - 14.14 9.51 7.74

HS grad 18.28 18.16 11.21 10.73 - 18.22 13.98 10.83
Some Col 20.55 20.42 12.78 12.68 - 20.49 16.69 12.54
Col grad 19.93 19.79 13.71 13.58 - 19.86 14.50 13.60

(4, 8] HS drop 19.72 19.16 10.98 11.69 - 19.46 15.03 11.32
HS grad 24.70 24.25 14.78 14.43 - 24.49 21.43 14.49

Some Col 27.09 26.77 16.39 16.28 - 26.94 25.92 16.17
Col grad 25.77 25.16 15.55 15.40 - 25.48 23.96 15.31

(8+] HS drop 25.72 25.75 17.66 17.94 - 25.73 26.03 17.78
HS grad 31.58 31.24 22.50 22.92 - 31.43 29.02 22.68

Some Col 33.67 33.32 24.87 24.61 - 33.51 29.11 24.70
Col grad 34.39 31.96 25.06 23.42 - 33.27 40.05 24.00

All All 0.61 0.61 0.49 0.49 - 0.61 0.54 0.49
[0, 4] HS drop 0.45 0.44 0.31 0.31 - 0.45 0.30 0.31

HS grad 0.51 0.51 0.37 0.37 - 0.51 0.43 0.37
Some Col 0.57 0.56 0.42 0.41 - 0.56 0.48 0.41
Col grad 0.57 0.57 0.42 0.44 - 0.57 0.44 0.43

(4, 8] HS drop 0.56 0.55 0.37 0.38 - 0.55 0.41 0.37
HS grad 0.64 0.63 0.44 0.43 - 0.63 0.55 0.43

Some Col 0.69 0.68 0.48 0.47 - 0.69 0.65 0.47
Col grad 0.70 0.70 0.48 0.48 - 0.70 0.78 0.48

(8+] HS drop 0.65 0.65 0.50 0.50 - 0.65 0.69 0.50
HS grad 0.75 0.75 0.59 0.60 - 0.75 0.69 0.60

Some Col 0.81 0.79 0.65 0.65 - 0.80 0.69 0.65
Col grad 0.86 0.83 0.68 0.65 - 0.84 0.88 0.66

Y1

A. Weeks worked

B. Employment

Data: 1980 Census. NT denotes never takers, C denotes compliers, AT denotes always takers.  There are no twins never-
takers.

Table 5: Average outcomes by compliance type and covariate value
Same sex Multi second

Covariates Y0 Y1 Y0


