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1. Introduction

∙Much of current econometric methodology is aimed at allowing lots

of individual heterogeneity (cross section and panel data).

∙ Even if we are not explicitly modeling heterogeneity, the modern way

we interpret standard estimators is colored by the belief that partial

effects (treatment effects) can vary widely across individuals – in

unobserved ways. This belief is the primary motivation for LATE,

marginal treatment effect, and so on.

∙ Sometimes we rely too much on unobserved heterogeneity for

explaining certain results.
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∙ Linear and nonlinear panel data models often incorporate

heterogeneity. Naive approaches can result in our attaching too much

importance to unobserved heterogeneity.

∙Models for cluster samples, including “heirarchical linear models”

(HLMs), place a premium on individual and group heterogeneity but

often to the detriment of the econometric analysis. (Confusion about

allowing lots of heterogeneity versus heterogeneity that is correlated

with observables.)
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Questions

1. Can we distinguish heterogeneity from other model features

(identification)?

2. When does explicitly recognizing heterogeneity matter?

3. Do stories about heterogeneity mask other econometric problems?

4. When do good intentions regarding heterogeneity lead to poor

estimators or inference?

5. How come we abandon heterogeneity in some situations?
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2. Quantities of Interest in Models with Heterogeneity

∙ Lots of empirical work focuses on estimating “partial” or “marginal”

effects.

∙ A general conditional mean function with observed covariates, xi and

unobserved heterogeneity, ci:

Eyi|xi,ci  mxi,ci

So the mean function is mx,c.

∙ If xj is continuous, its partial (or marginal) effect is

PEjx,c  ∂mx,c
∂xj
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∙What should we do about the argument c? If we know Dci, or some

features of it, we can plug in interesting values, such as the mean,

c  Eci:

PEAjx 
∂mx,c
∂xj

∙ The “partial effect at the average” (PEA) is is not usually the same

quantity that underlies the modern treatment effect literature. Plus, if ci

is continuous (or generally takes on lots of values) then PEAjx

applies to only a small part of the population.
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∙ Of course, if we can identify Dci along with mx,c, then we can

replace c with lots of interesting values, such as certain quantiles or a

given number of standard deviations from the mean.

∙ A different way to handle heterogeneity is to average the partial

effects across Dci, giving the “average partial effect” (APE):

APEjx  Eci
∂mx,ci
∂xj

∙ If xj is binary and we look at the difference rather than the derivative,

we get the average treatment effect (ATE).
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∙ Idea of an APE is closely related to Blundell and Powell’s (2004,

REStud) “average structural function” (ASF):

ASFx  Ecimx,ci

∙ Definitions of PEA and APE are the same whether or not ci is

correlated with xi. Of course, whether we can estimate APEs, and how,

depends on what we assume about the relationship between ci and xi.
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3. Can we Distinguish Heterogeneity from Other Model
Features?

Cross Section, Linear Model

∙ Consider a random coefficient model for random draws from a cross

section:

yi  ai  xibi

  Eai,   Ebi

For example, “ability,” bi1, interacts with schooling, xi1.

∙ In this case, the PEAs and APEs are the same: the j.
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∙ Letting ai    ei and bi    di, we can write

yi    xi  ei  xidi

≡   xi  ui

∙ If we assume ai,bi is independent of xi then

Eyi|xi    xi

Varyi|xi  e
2  2xive  xi

′vxi
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∙ Can we really feel comfortable asserting that heteroskedasticity in

Varyi|xi is due only to heterogeneity in the slopes? It could be that

bi   and Varai|xi is heteroskedastic.

∙ This lack of identification is of little concern here because for

estimating partial effects, the reason Varyi|xi is heteroskedastic is

irrelevant: the APEs ( PEAs) are identified from Eyi|xi    xi

(and we can use OLS or weighted least squares to estimate them).
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Cross Section, Nonlinear Model

∙ Let yi be a binary response, and consider two underlying models for

yi.

Model 1:

yi  1ai  xibi  0
ai,bi independent of xi

ai,bi ~ Multivariate Normal

∙ This model has lots of unobserved heterogeneity: all slopes can vary

by i.
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Model 2:

yi  1ai  xi  0
Dai|xi  Normal,0  xi1  xi

′Γ2xi

ai,bi ~ Multivariate Normal

∙ This model has very little unobserved heterogeneity: ai is the only

observable.
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∙Models 1 and 2 are observationally equivalent because they both lead

to “heteroskedastic probits” for Pyi  1|xi:

Pyi  1|xi  
  xi

0  xi1  xi
′Γ2xi

(Need a normalization, usually 0  1.)

14



∙ Unlike in the linear model, the models have very different

implications for computing APEs. Model 1 APEs are derivatives of

   x
1  x1  x′Γ2x

whereas in Model 2 they are derivatives of

Exi    x
1  xi1  xi

′Γ2xi
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∙ For Model 1, the APE of xj is complicated and need not have the

same sign as j. For Model 2, the APE of xj has the same sign as j,

and the relative APEs for continuous xj and xh is j/h.

∙ For Model 2, the ASF can be consistently estimated as

ASFx  N−1∑
i1

N

 ̂  x̂

1  xi̂1  xi
′Γ̂2xi

.

∙ Conclusion: Unlike with the linear model, here we cannot tell how to

compute the APEs unless we take a stand on the underlying model.

Lack of identification.
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∙ The claim about APEs for Model 1 is a special case of a general

situation. If we start with

Eyi|xi,ci  mxi,ci

and assume ci is independent of xi, the APEs are obtained simply from

rx ≡ Eyi|xi  x,

which is nonparametrically identified.

∙ In other words, if APEs are of interest, we can just ignore the

heterogeneity entirely and search for flexible models for Eyi|xi [or

Dyi|xi more generally].
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∙ A very useful extension: Suppose

Eyi|xi,ci,wi  Eyi|xi,ci  mxi,ci (redundancy of wi

Dci|xi,wi  Dci|wi (wi contains good “proxies” for ci

Define

rx,w  Eyi|xi  x,wi  w.

It can be shown that

ASFx  Ewirx,wi.
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∙ rx,w is nonparametrically identified if wi has enough separate

variable from xi. And we can always use flexible parametric

approximations.

∙We can consistently estimate the ASF as

ASFx  N−1∑
i1

N

r̂x,wi

∙ Has lots of applications to true proxy situations (for example, IQ

proxies for “ability”) but also for correlated random effects panel data

models and control function methods to handle endogenous explanatory

variables.
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∙ Economists like to think we can be more structural, but can we in a

convincing way? The previous probit example shows it is heroic to

think that we can generally distinguish between models with “a little

heterogeneity” and “a lot of heterogeneity.”

∙ But if we maintain assumptions of the form

Dci|xi  Dci or Dci|xi,wi  Dci|wi

then we can at least identify APEs even though we cannot necessarily

identify Dci|xi or Dci.
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∙ See Wooldridge (2010, MIT Press) for an even simpler probit

example that shows APEs are identified even the the “structural”

parameters and heterogeneity distribution are not.

∙ Introducing endogeneity in xi does not help identify structural

parameters. But APEs can still be identified using instruments and

control function methods [Blundell and Powell (2004), Wooldridge

(2005, Rothenberg Festschrift)].
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Linear Panel Data Model

∙With panel data, separating heterogeneity from other sources of

randomness is more promising but still has its pitfalls.

∙ Consider the standard unobserved effects model with a single,

additive source of heterogeneity:

yit  xit  ci  uit

≡ xit  vit

where vit ≡ ci  uit.is the composite error.
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∙ Typically we identify c
2 and u

2 from the expressions

c
2  Covvit,vir, t ≠ r

u
2  v

2 − c
2

∙We often draw conclusions about the importance of heterogeneity

from

  c
2

c
2  u

2

which is routinely estimated after random effects or fixed effects

estimation of .
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∙ But the usual estimate of  is valid only when uit : t  1, . . . ,T is

serially uncorrelated and homoskedastic. With positive serial

correlation,  is almost certainly overestimated.

∙ In the extreme case where Varui is a general T  T covariance

matrix, identification of c
2 is lost.
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∙ Ironically, will often see “cluster robust” standard errors reported

with RE and FE estimation – to guard against heteroskedasticity/serial

correlation in uit – while at the same time relying on standard

estimates of  to determine the importance of ci.

∙ For estimating  and conducting inference, it does not matter whether

we can identify features of Dci.
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. xtreg lpassen lfare concen ldist ldistsq y98 y99 y00, re

Random-effects GLS regression Number of obs  4596
Group variable: id Number of groups  1149

----------------------------------------------------------------------------
lpassen | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
lfare | -1.108796 .022065 -50.25 0.000 -1.152043 -1.065549

concen | .1119717 .0387787 2.89 0.004 .0359668 .1879766

---------------------------------------------------------------------------
rho | .97188941 (fraction of variance due to u_i)

----------------------------------------------------------------------------

. xtreg lpassen lfare concen ldist ldistsq y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id
----------------------------------------------------------------------------

| Robust
lpassen | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
lfare | -1.108796 .1034778 -10.72 0.000 -1.311609 -.9059832

concen | .1119717 .0850196 1.32 0.188 -.0546636 .278607
---------------------------------------------------------------------------

rho | .97188941 (fraction of variance due to u_i)
----------------------------------------------------------------------------
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∙What about panel data models with lots of heterogeneity?

yit  xitbi  ci  uit

≡ xit  ci  xitdi  uit

under the assumptions

Dci,bi|xi  Dbi  b

Eui|xi,bi,ci  0
Varui|xi,bi,ci  u

2IT
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∙ Estimation can be hard even under these strong assumptions;

simulation and Bayesian methods often relied on.

∙ Empirically, the conclusion is usually that Varbi ≠ 0, so there is

“lots of heterogeneity” – even though none or very little of it is

observable

∙ But the entire analysis hinges on the strong assumption that

Varui|xi,bi,ci  u
2IT (particularly, no serial correlation in uit).

∙ By contrast, consistent estimation the APEs   Ebi along with

fully robust inference are straightforward.
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Nonlinear Panel Data Models

∙ Correlated random effects (CRE) probit model:

Pyit  1|xi1, . . . ,xiT,ci  xit  ci

Dci|xi1, . . . ,xiT  Dci|x̄i  Normal  x̄i,a
2

where x̄i  T−1∑r1
T xir.

∙ These assumptions are enough to estimate the APEs, but not the

PEAs or effects at other values of c:  is identified only up to scale, and

, , and a
2 are not separately identified (which means Dci is not

identified).
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∙ If we add conditional independence,

Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xi,ci,

then we can identify all parameters and so also the unconditional

moments c, c
2 [and even all of Dci].

∙ How badly do we want to identify the heterogeneity distribution and

at what cost? The joint MLE (“random effects probit”) is not robust for

estimating the APEs; the pooled MLE is.
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∙What if we want to allow more heterogeneity?

Pyit  1|xi1, . . . ,xiT,ci  ai  xitbi

and not impose conditional independence (or other specific dependence

restrictions)?

∙ Short of trying to estimate ai,bi for each i (with only T observations

each), it suffices to restrict Dci|xi1, . . . ,xiT in some way, such as

Dci|xi1, . . . ,xiT  Dci|x̄i or, more generally,

Dci|xi1, . . . ,xiT  Dci|wi

for suitable “sufficient statistics” wi.
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∙ Have to impose some restrictions on wi, but the APEs are

nonparametrically identified from

rxit,wi ≡ Pyit  1|xit,wi

without restricting Dci|wi:

ASFxt  Ewirxit,wi.

[Altonji and Matzkin, (2005, Econometrica), Wooldridge (REStat,

2005).]
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∙ The focus on APEs can be liberating and allows a lot of underlying

heterogeneity. Generally, for any response variable yit, the ASF is

identified under

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci (strict exogeneity of xit)

and

Dci|xi1, . . . ,xiT  Dci|wi (wi a “sufficient statistic”)

with suitable restrictions on wi.
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∙ As a radical suggestion, just use flexible flexible functions of xit and

wi in standard parametric models, and then average out wi.

∙ For example,

r̂xit,wi  ̂t  xit̂  x̄i̂  xit ⊗ x̄i̂  gi̂ xit ⊗ gi̂

where the gi are, say, average trends in xit : t  1, . . . ,T
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∙ The APEs are estimated as derivatives of or discrete changes in

ASFxt  N−1∑
i1

N

̂t  xt̂  x̄i̂  xt ⊗ x̄i̂  gi̂ xt ⊗ gi̂

∙ Note: Similar strategies can be justified for linear panel data models

(that is, include polynomials and interactions of time averages and

trends).

∙ Some complain about CRE approaches as being restrictive, but “fixed

effects” approaches do not assume less, and they deliver less, too (no

magnitudes of effects).
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When Can Appealing to Heterogeneity Lead Us to Harmful
Conclusions?
Attributing Findings to Heterogeneity Rather than Poor Instruments

∙ The interpretation of LATE – as measuring the effect of a policy on a

particular, unidentifiable subset of the population – has proven useful,

but it can be abused.

∙ For example, why are IV estimates of the return to schooling often

larger than OLS estimates? “Ability” bias suggests it should be

otherwise. The LATE interepretation is heterogeneous returns to

schooling: the return for “compliers” is larger than the average return.

But might the instrument just be poor (even just “slightly”

endogenous)?
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Ignoring Other Econometric Problems when Conducting Inference

∙ Less serious but serious enough: standard inference in models with

even lots of heterogeneity can be very misleading. Only fairly recently

has “cluster-robust” inference become popular for linear models

estimated by fixed effects and random effects. Traditionally it was

taken as a given that all other sources of randomness were i.i.d. shocks.

(Airfare example gives a counterexample.)

∙ Robust inference is not as commonly used in nonlinear panel data

models (for example, random effects versions of probit, Tobit, and

count models). But it should be.
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. xtpqml passen lfare concen y98 y99 y00, fe

Conditional fixed-effects Poisson regression Number of obs  4596
Group variable: id Number of groups  1149

----------------------------------------------------------------------------
passen | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
lfare | -.8658171 .0069057 -125.38 0.000 -.879352 -.8522822

concen | -.1289482 .0123807 -10.42 0.000 -.1532138 -.1046825
----------------------------------------------------------------------------

Calculating Robust Standard Errors...
----------------------------------------------------------------------------

passen | Coef. Std. Err. z P|z| [95% Conf. Interval
---------------------------------------------------------------------------
passen |

lfare | -.8658171 .036619 -23.64 0.000 -.937589 -.7940452
concen | -.1289482 .0544245 -2.37 0.018 -.2356182 -.0222781
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. xtpoisson passen lfare concen ldist ldistsq y98 y99 y00, re

----------------------------------------------------------------------------
passen | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
lfare | -.8621147 .00688 -125.31 0.000 -.8755993 -.8486301

concen | -.1353661 .0123453 -10.96 0.000 -.1595624 -.1111697
----------------------------------------------------------------------------

. xtpoisson passen lfare concen ldist ldistsq y98 y99 y00, re vce(boot,r(200

----------------------------------------------------------------------------
| Observed Bootstrap Normal-based

passen | Coef. Std. Err. z P|z| [95% Conf. Interval
---------------------------------------------------------------------------

lfare | -.8621147 .0355057 -24.28 0.000 -.9317046 -.7925249
concen | -.1353661 .0565836 -2.39 0.017 -.2462678 -.0244643

----------------------------------------------------------------------------
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∙ Ignoring key features, namely heteroskedasticity and serial

correlation in the idiosyncratic errors, is rampant in the “hierarchical

linear models” (HLMs) or “mixed models” literature. Defaults are

always to assume the idiosyncratic errors are independent over time

while allowing for group-level, as well as individual-level,

hetereogeneity.

∙ Applications of HLMs are where RE was a decade ago: attribute

serial correlation entirely to unobserved heterogeneity.

∙ Remember, having the variance-covariance matrix misspecified does

not cause inconsistency in feasible GLS. But assuming the V-C matrix

is correctly specified can lead to very misleading inference.
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. xtreg math4 lavgrexp lunch lenrol y95 y96 y97 y98, re

Random-effects GLS regression Number of obs  7150
Group variable: schid Number of groups  1683

---------------------------------------------------------------------------
lavgrexp | 7.838068 1.454286 5.39 0.000 4.987721 10.68842

----------------------------------------------------------------------------

. xtreg math4 lavgrexp lunch lenrol y95 y96 y97 y98, re cluster(schid)

(Std. Err. adjusted for 1683 clusters in schid
---------------------------------------------------------------------------

lavgrexp | 7.838068 1.578525 4.97 0.000 4.744217 10.93192

----------------------------------------------------------------------------

. xtreg math4 lavgrexp lunch lenrol y95 y96 y97 y98, re cluster(distid)

(Std. Err. adjusted for 467 clusters in distid
---------------------------------------------------------------------------

lavgrexp | 7.838068 2.157833 3.63 0.000 3.608793 12.06734

----------------------------------------------------------------------------
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. xtmixed math4 lavgrexp lunch lenrol y95 y96 y97 y98 || distid: || schid:

Mixed-effects REML regression Number of obs  7150

-----------------------------------------------------------
| No. of Observations per Group

Group Variable | Groups Minimum Average Maximum
----------------------------------------------------------

distid | 467 3 15.3 623
schid | 1683 3 4.2 5

-----------------------------------------------------------
---------------------------------------------------------------------------

lavgrexp | 5.674265 1.577373 3.60 0.000 2.582671 8.765859
----------------------------------------------------------------------------
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Pitfalls of Structural Dynamic Models with Heterogeneity

∙When the nature of the problem requires us to incorporate

heterogeneity, we have no choice. Leading example is determining the

amount of “state dependence” in

Dyit|yi,t−1,yi,t−2, . . . ,yi0,ci,

or add covariates. Some nontrivial assumptions are required, but fairly

convincing analyses are available.

∙ But what if we are mainly interested in the effects of covariates –

particularly policy interventions – on average outcomes?

43



∙ Example: Value-added models for estimating the effectiveness of

teachers, schools, or programs. The “educational production function”

approach is a structural approach with heterogeneity. With achievement

Ait and educational inputs Eit, a typical starting point is a distributed lag

on school inputs, with student heterogeneity, ci:

Ait  t  Eit0  Ei,t−11 . . .Ei0t  ci  uit

∙ If we impose a geometric distributed lag restriction on the j then

s  s0 for some 0 ≤  ≤ 1. Leads to

Ait  t − t−1  Ai,t−1  Eit0  1 − ci  uit − ui,t−1

≡ t  Ai,t−1  Eit0  ai  eit
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∙ If we make some extra assumptions – eit  uit − ui,t−1 is serially

uncorrelated, Eit is strictly exogenous with respect to uit – then the

methods of Arellano and Bond (1991, REStud) can be used to estimate

 and 0.

∙ The AB method is based on IV estimation of

ΔAit  t  ΔAi,t−1  ΔEit0  Δeit

where ΔEit acts as its own instruments.

∙ A key worry is the nature of assignment of Eit (for example, teachers

or class size). Is assignment dependent on ci or Ai,t−1 or past shocks?
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∙ Guarino, Reckase, and Wooldridge (2011, Working Paper): In

simulations, the AB approach is very sensitive to nonrandom

assignment mechanisms (and serial correlation). Dynamic OLS –

ignoring the nature of eit and the heterogeneity ci – is much better

behaved for estimating 0 even though it is technically inconsistent for

 and 0.

∙ DOLS is only slightly worse than random effects when random

effects is the “right” thing to do (random assignment, no extra serial

correlation).
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How Come We Sometimes Ignore Heterogeneity?

∙ Suppose we are interested in the conditional median rather than the

conditional mean:

Medyi|xi,ai,bi  ai  xibi.

How should we define the population paramters of interest?

j  Ebij? j  Medij?

∙ Even if bi is independent of xi, neither the APEs nor median partial

effects are generally identified. Need multivariate symmetry. Things

are even harder with panel data.
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∙What about endogenous treatment effects? Asymmetry in focusing on

heterogeneity in the response equation but assuming it away in the

treatment equation:

yi  aiwi  xibi  ui

wi  1fi  zigi  0

where the treatment wi can be correlated with ai,bi and zi includes

exogenous variables xi in the response equation and extra instruments.
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∙ Card (2001, Econometrica) proposes an economic model that

determines wage and level of schooling. The “reduced form” for

schooling turns out to be a random coefficient model. Can we justify

arguing for heterogeneity in a wage equation but not a schooling

equation?

∙ Evidently, the problem is theoretical: generally, the presence of gi

violates the monoticity assumption in the LATE setting and

(necessarily) the index structure of Heckman and Vytlacil (2005,

Econometrica).
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∙ See also Florens, Heckman, Meghir, and Vytlacil (2008,

Econometrica): If the cost function for schooling is sufficiently

heterogenous, monotonicity fails.

∙ Of course, if we make full parametric assumptions on

Dai,bi, fi,gi|zi then   Eai (the ATE) can be identified and ATEs

for subpopulations.
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∙Why not just admit there are limits on how much heterogeneity can

be allowed in nonparametric and semi-parametric approaches to

identifying average treatment effects and use flexible parametric

models? Are distributional assumptions so much worse than assuming

away heterogeneity in selection equations?

∙ The kinds of monotonicity assumptions used in the nonparametric

work are not strictly weaker than parametric assumptions. Why should

we necessarily place more trust in monotonicity?

∙ As a corollary, if nonparametric and parametric methods give

different answers we cannot tell which one is “better.”
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Summary

∙ Introducing heterogeneity independent of covariates can be a useful

functional form device, but some important quantities of interest

(APEs) do not depend on whether or how heterogeneity is in the model.

∙ The same is true under a conditional independence assumption: we

can often identify average partial effects even though we know nothing

about the shape of the heterogeneity distribution.

∙ Trying to identify heterogeneity distributions from cross section data

seems heroic. Identification fails in leading cases.
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∙ Identifying heterogeneity distributions with panel data is more

promising but relies on restrictions on the dynamics of the process and

(usually) imposes strict exogeneity on a set of covariates.

∙ Very flexible methods for estimating APEs require much weaker

assumptions on dynamics and the heterogeneity distribution.

Parameters and the heterogeneity distribution are not always fully

identified but APEs are.
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∙ Lately it has become popular to appeal to heterogeneity to explain

counterintuitive outcomes, but there may be competing explanations

(such as poor instruments).

∙ There are problems for which modeling heterogeneity is fundamental,

such as distinguishing between heterogeneity and state dependence. But

in other cases – particularly for analyzing policy interventions –

dynamic, structural models can produce notably inferior results.
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∙ Nonparametric approaches to identifying treatment effects rule out

even simple forms of heterogeneity in the selection equation. Is this

always better than parametrically modeling lots of heterogeneity in the

response and selection equations? There still appears to be plenty of

scope for flexible parametric analysis.
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